
#BHASIA @BlackHatEvents



#BHASIA @BlackHatEvents

The Hidden RCE Surfaces that Control the Droids

Qidan He

Juntao Wu



About us

● Qidan He
○ Director, Chief Researcher, Shaechi Security Lab

○ Winner of multiple Pwn2Own championships. He has spoken at conferences like Black Hat, 

DEFCON, RECON, CanSecWest, MOSEC, HITB, PoC, etc.

● Juntao Wu
○ Security researcher focusing on mobile security at Team Pangu. He is currently focusing on 

mobile security and program analysis.



Agenda

● Overview

● Different RCEs in Android ecosystem
○ libPac in Android AOSP

○ Image formats in Samsung Android Quram

○ SPI image in Samsung Notes

● Diving into dynamic binary fuzzing

● Conclusion



RCEs on Android

WIFI NFC FILE Bluetooth Baseband



File RCEs still exist in Android

● High-definition images

● Complex media files

● Specific configuration file



Target One: The LibPac Surface in AOSP

● What’s PAC?
● OS provides way for users to configure a Proxy-Auto-Config script

● A proxy auto-config (PAC) file defines how web browsers and other 

user agents can automatically choose the appropriate proxy server 

(access method) for fetching a given URL.

● In JavaScript (whoops)



Target One: The LibPac Surface in AOSP

● Windows use JScript to parse PAC file
● Previous P0 research shows on Windows attacker can obtain RCE by hijacking the WPAD 

domain to host malicious PAC and exploit jscript[1]

● What’s the situation for Android?

[1]: https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html



Target One: The LibPac Surface in AOSP

● V8 is a complex and powerful attack surface in Android so it’s heavily 

sandboxed
● Browser V8 runs in isolated_app context

● Before 2017 we have good old times when application WebViews are not isolated

● Used in Mobile Pwn2Own 2017, killed in Android O (isolated webview)

● Imagine a remaining, unisolated V8 in platform_app context?

● Too good to be true, but yet exists

● Now let’s see how PAC file is processed in Android 
○ Different implementations in Android <=10, 11 and 12 

○ CVE-2020-0240, CVE-2020-0224, CVE-2021-0393



Target One: The LibPac Surface in AOSP (<11)

● A dedicated service PacService exported in packages/services/PacProcessor
● Exposes interface: public String resolvePacFile(String host, String url)

● Calls into PacNative.makeProxyRequest(url, host)

https://cs.android.com/android/platform/superproject/+/android-10.0.0_r1:frameworks/base/packages/services/PacProcessor/src/com/android/pacprocessor/PacService.java



Target One: The LibPac Surface in AOSP (<11)

● PacNative is backed by libjni_pacprocessor.so
● Which wraps various calls to V8

● And where is the `ProxyResolverV8Handle` implemented?

https://cs.android.com/android/platform/superproject/+/android-10.0.0_r1:frameworks/base/packages/services/PacProcessor/jni/com_android_pacprocessor_PacNative.cpp



Target One: The LibPac Surface in AOSP (<11)

● The answer is external/chromium_libpac and external/v8
● The final implementation creates a V8 context in the process space and evaluates the PAC

https://cs.android.com/android/platform/superproject/+/android-10.0.0_r1:external/chromium-libpac/src/proxy_resolver_v8.cc



Target One: The LibPac Surface in AOSP (<11)

● … and a separate branch of v8 is maintained and used in external/v8

https://android.googlesource.com/platform/external/v8/+log



Target One: The LibPac Surface in AOSP (<11)

● Problems here:
● The separate V8 repo has patch gap: Ndays also work

● The resolver itself is in native code and might contains bug

● The V8 does not run in isolated process

● Some previous reports lead to a minor change in the V8 options
○ Kills JIT bugs, but far from enough



Target One: The LibPac Surface in AOSP (<11)

● Example: CVE-2020-0240 Integer overflow in NewFixedDoubleArray
● Originally chromium issue 938251

● NewFixedDoubleArray does not expect negative int for length, leading to overflow

● Does not require JIT 

● Crafting exploit
○ Create an array with length oob

○ Get ARW and overwrite WASM code page

○ Jump to shellcode

● Got execution in platform_app context
○ fortunately(!) permission is limited



Pac RCE DEMO



Target One: The LibPac Surface in AOSP (11)

● Changes in AOSP were introduced to mitigate these bugs
● sUsedWebViewPacProcessor switches between PacWebview (default) and PacNative

● PacWebview redirects to SystemWebview



Target One: The LibPac Surface in AOSP (12)

● In Android 12, the switch is removed and only PacWebview is used
● PacWebview redirects to SystemWebview

● But the parsing still runs in non-isolated context

● Crashes working to relevant WebView version in the platform_app process



Target Two: DNG and other formats in Samsung Quram Library

● First bug in Quram found by Natalie of P0 in 2015

● P0 and I both conducted fuzzing again in early 2020
○ From different code paths and different formats

○ Found bugs in JPEG, QMG, GIF, DNG parsing, etc

● A quite complex binary with lots of codecs and in system partition



Target Two: API reversing of Samsung Quram Library

● A nature entry is in the stock Gallery 

App

● QuramCodecInterface is the Java 

wrapper for QuramCodec

● Called by ImageDecoder.decodeFile

● QuramCodec is called
○ If Codec is present

○ If inJustDecodeBounds is true

○ If ifPreferedQuramCodec is true



Target Two: API reversing of Samsung Quram Library

● For all image types:
● some MIMEs are default to true

● Other major types (JPEG, GIF, BMP, WBMP, PNG, etc)
○ Set to true in some threads

■ Thumbnail, FaceDetection, etc

■ Automatically triggered when file is added to inventory

■ otherwise delegate to SKIA (not interesting)

● Receiving image triggers the library (and its bugs in background silently)



Target Two: API reversing of Samsung Quram Library

● The JNI function accepts a 

filepath/bytearray, and returns 

an AndroidBitmap with pixels 

filled

● Metadata is retrieved by 

QuramGetImageInfoFromFile

(height/width/filetype)

● Creates Bitmap based on 

metadata



Target Two: API reversing of Samsung Quram Library

● AndroidBitmap_lockPixels

creates buffer depend on RGB 

type

● Parsing dispatches to 

QrDecodeImage for different 

types

● AndroidBitmap_unlockPixels

finishes decoding



Target Two: API reversing of Samsung Quram Library



Target Two: API reversing of Samsung Quram Library

JNI Entry QuramGetImageInfoFromFile2
Creates AndroidBitmap

and locks buffer

QrDecodeImage writes to 

buffer
Return Bitmap created



Target Two: Whoa, DNG



Target Two: API reversing of Samsung Quram Library

● DNG is first-class Quram citizen

● Not delegated to SKIA for 
○ Samsung custom format



Creating Harness

JNI Entry QuramGetImageInfoFromFile2
Creates AndroidBitmap

and locks buffer

QrDecodeImage writes to 

buffer
Return Bitmap created



Creating DNG Harness

JNI Entry QuramGetImageInfoFromFile2 QrParseMetaData

QrDecodeDNGFile writes 

to buffer
Return Bitmap created QrDecodeDNGFile



Target Two: Samsung Quram Library

● Output example: 

Integer overflow CVE-

2021-25346



Target Two: Samsung Quram Library

● Output example: Heap 

Overflow, OOB write, 

bad free: CVE-2020-

25278, CVE-2020-

12751 etc



Target Three: Time to deep dive in

● Can we find more similar vulnerabilities?

● Besides Qmg/JPEG/DNG/etc, no more information on the web about private 

media files for Samsung phones

● So where will Samsung use its unique format?
○ Pre-Installed Apps that handles media files(e.g. Messages, MyFiles, Gallery…)

○ System or privileged process that handles media files

○ ……



Target Three: Find something interesting

● When we look for a new attack surface based on the idea of mining qmg

format vulnerabilities

● In addition to qmg, there is also spi

● It looks like some images about the system status



Target Three: Attack surface locating

● Unlike Qmg, we have no information about the spi format

● So → The Old Fashioned Way
○ API reversing

○ /system/bin/lpm, /system/lib64/libmate.so

○ Samsung Notes

○ Honeyboard

○ SmartCapture

○ Calendar

○ Crane

○ ……



Target Three: Attack surface locating

● Unlike Qmg, we have no information about the spi format

● So → The Old-Fashioned Way
○ API reversing

○ /system/bin/lpm, /system/lib64/libmate.so

○ Samsung Notes

○ Honeyboard

○ SmartCapture

○ Calendar

○ Crane

○ …….

SPen SDK

sdoc, sdocx



Target Three: API reversing of SPenBase library

● Parse logic in java

● Parse logic in native



Target Three: API reversing of SPenBase library

● The logic is clear, .spi is the 

built-in file format of .sdocx

● Metadata is retrieved by 

read_maetel_argb

● Creates Bitmap based on 

metadata

● The JNI function accepts a 

filepath/bytearray, and returns 

an AndroidBitmap with pixel 

filled



Target Three: API reversing of SPenBase library

● AndroidBitmap_lockPixels

creats buffer depend on RGB 

type

● Parsing dispatches to 

maetd_decode for different 

types

● AndroidBitmap_unlockPixels

finishes decoding



Target Three: Reverse the format struct

● Like a normal file parser, the key point is the end, width, height
○ Its log help us to confirm quickly

● So we change some key bits to see if the codec is running correctly



Case Study: CVE-2021-25496



Case Study: CVE-2021-25498



State-of-the-art Fuzzing 

● Fuzzing need some sort of "feedback”

● de facto standard of modern fuzzing: Coverage-Guided (CGF) 

● coverage information is the key
○ compiler instrumentation w/ source code (GCC, LLVM)

○ hardward-based: processor trace

○ binary-based: static rewrite/ dynamic tracing (!) 



State-of-the-art Fuzzing 

● Fuzzing need some sort of "feedback”

● de facto standard of modern fuzzing: Coverage-Guided (CGF) 

● coverage information is the key
○ compiler instrumentation w/ source code (GCC, LLVM)

○ hardward-based: processor trace

○ binary-based: static rewrite/ dynamic tracing (!) 



AFL w/ compiler instrumentation

● Record coverage edge transfers in shared mem
○ cur_location = <COMPILE_TIME_RANDOM>; 

○ shared_mem[cur_location ^ prev_location]++; 

○ prev_location = cur_location >> 1;

● Inputs that triggers new local_state is added to Queue



However,…

● Few real-world cases have been 

discussed
○ Especially for mobile binaries

○ Fill the gap between theory and 

action



First things first

● Static rewrite or dynamic tracing



Static rewrite for Android binaries

● arm/aarch64 support is immature
○ runtime crashes, incomplete coverages

● computing power on phones vs servers
○ overheating, slow perfs, physical bricks…

● Conclusion
○ not an acceptable solution(rewriting arm binaries and runs on arm devices)



Dynamic tracing: Trap/debugger approach?

● Great in macOS format fuzzing as demonstrated by P0

● Also in some service/API fuzzing

● Good for doing quick/dirty test, but same problem for large scale



Dynamic tracing: QEMU approach

● QEMU provides dynamic binary translation via TB (Translated Block)
○ TCG (Tiny Code Generator) as IR

■ Target Machine Code ->

■ Frontend -> Ops -> Backend

■ -> Host Machine Code



Dynamic tracing: QEMU approach

● Coverage collection via TB hooking: tb_find_slow
○ afl_maybe_log: … afl_area_ptr[cur_loc ^ prev_loc]++; …

○ Afl-plusplus/ afl-unicorn



Dynamic tracing: QEMU approach(cont.)

● Unicorn provides a raw interface to run machine code
○ runs arm code at given memory address of given content

○ provides callback and memory interfaces

■ user need to impl syscalls / ELF initialization loading

● QEMU-user reuses host OS env to support different instruction set
○ translate & forward syscalls to host kernel with same syscall interface/ABI

○ X64 Linux server + android arm/aarch64 harness



Dynamic tracing: QEMU approach(cont.)

CPU Emulation

Flow control

Peripheral Model& 

Memory

IO

InterfacesJIT
Soft

MMU



Dynamic tracing: QEMU-user approach(cont.)

CPU Emulation

Flow control

Peripheral Model& 

Memory

(Partially Translated 

& Forwarded to Host 

OS)

IO

Interfaces

(Translated & 

Forwarded 

to Host OS

JIT
Soft

MMU

Kernel(Host Kernel)



Dynamic tracing: QEMU-unicorn approach(cont.)

CPU Emulation

Flow control

Peripheral Model& 

Memory

(Impl if needed)

IO

Interfaces

(Impl needed part, 

i.e. syscalls &)

JIT
Soft

MMU

Kernel(Provided Kernel)



Time to Fuzz

● Conclusion: QEMU-unicorn is faster than QEMU-user with the cost of 

engineering effort, but QEMU-user is fairly enough



Fuzzing!

● Input cases: afl_images

● Prepare relevant system partition in environment

● Running at ~200/sec per core, ~6000 per server

● the outcome …

● Bugs outcome already mentioned above 



Crash triaging

● QEMU does not reflect crash trace to host
○ Need a custom unwinder/backtracer

● Memory sanitizers help
○ Libdislocator

○ QASAN



Other real-world cases:

● We also found a large number of critical and high severity vulnerabilities in 

Samsung's simba library, Xiaomi's system library and other similar 

vulnerabilities from other vendors. But due to various issues such as updates, 

it is regrettable that we cannot share with you this time.



References

● https://github.com/AFLplusplus/AFLplusplus

● https://github.com/Battelle/afl-unicorn

● https://abiondo.me/2018/09/21/improving-afl-qemu-mode

● https://github.com/andreafioraldi/qasan

● https://gts3.org/~wen/assets/papers/xu:os-fuzz.pdf

https://github.com/AFLplusplus/AFLplusplus
https://github.com/Battelle/afl-unicorn
https://abiondo.me/2018/09/21/improving-afl-qemu-mode
https://github.com/andreafioraldi/qasan


Questions?

● Relevant POC and fuzzing harness will be available at 

https://github.com/flankerhqd/vendor-android-cves after the talk

https://github.com/flankerhqd/vendor-android-cves


Thanks!

● Twitter: @flanker_hqd, @Dawuge3


